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Abstraet--A wave front perturbation method is applied to a one-dimensional two-phase flow in a horizontal 
duct to analyze the interfacial wave stability. The governing equations are thus reduced to a first-order 
ordinary differential equation (ODE). The linear solution of this ODE agrees with the conclusion from the 
small amplitude wave perturbation approach. The non-linear theory suggests that the linear stability result 
is sufficient for predicting instability in wavy flow, and may over-predict the critical gas velocity for large 
disturbances. Accordingly, a weak non-linear stability criterion is obtained. The type of unstable wave, 
under-cut wave or roll wave, also can be predicted analytically. Copyright © 1996 Elsevier Science Ltd. 

INTRODUCTION 

In a horizontal duct, the onset of interfacial wave 
instability for a separated gas-liquid wavy flow is 
usually related to the wavy-slug flow regime transi- 
tion. The conventional approach to analyze this wave 
stability problem is to linearize the governing equa- 
tions and to seek traveling wave solutions, resulting 
in a quadratic algebraic characteristic equation that 
involves the wave propagating velocity C. If the solu- 
tion of this velocity has an imaginary part, waves are 
unstable. It implies that disturbances of any sizes will 
be amplified exponentially with respect to time. Fol- 
lowing this approach, the classical inviscid Kelvin- 
Helmholtz stability criterion is obtained in the fol- 
lowing form to predict the critical relative velocity 
between the gas phase and the liquid phase in a hori- 
zontal duct: 

(,,O r- pg)ghg , 
( V g -  V f ) ~  ] ~ g  (1) 

where Vg, pg, Vf, pf, hg, and g stand for gas velocity, gas 
density, liquid velocity, liquid density, gas chamber 
height (Fig. 1), and the gravitational acceleration, 
respectively. When the relative velocity is larger than 
a certain critical value, the suction effect resulting 
from the gas pressure variation over a wave bump 
overcomes the stabilizing effects. Accordingly, waves 
begin to grow, resulting in slug formation. However, 
experimental data [2-4] show that the critical relative 
gas velocity is much smaller than the value predicted 
by above criterion. In 1976, Taitel and Dukler [5] 
developed a correlation based on the major force bal- 
ance on an inviscid interfacial wave of finite ampli- 
tude, and proposed a factor K to modify the K-H 
instability. This factor was gas void fraction depen- 

dent, and agreed with the experimental results of Man- 
dhane. A theoretical approach was introduced earlier 
by Kordyban and Ranov [6] to consider inviscid 
waves of finite amplitude. They suggested that the 
effect of K-H instability could be enhanced in a closed 
duct because of the non-linear terms in the governing 
equations. They derived a modifying factor K as a 
function of wave number k, as well as gas void frac- 
tion. It required the knowledge of the wave number k 
at the point of slug formation. To avoid this incon- 
venience, Mishima and Ishii [7] applied the concept 
of 'most  dangerous wave' to Kordyban's method and 
achieved an analytical solution of the modification 
factor K equal to 0.487, which was close to 0.5, the 
experimental results of Wallis and Dobson [2]. 

Some investigators [8-10] suggested that friction 
effects played an important role in slug formation. 
They solved the linearized field equations with inter- 
facial and wall friction effects by means of a small 
amplitude perturbation technique. Their results were 
consistent with the existing experimental data for two- 
phase pipe flow. The underlying mechanism of this 
approach, as pointed out by Wallis in 1969 [1], was 
that instability occurred whenever the continuity wave 
overtook the dynamic wave. Recently, Barnea and 
Taitel [11] analyzed the existence of multiple steady- 
state solutions for stratified flow, and proposed a con- 
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Fig. 1. Concurrent separated two-phase flow in a horizontal 
duct. 
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A coefficient matrix 
b term defined in the text 
C wave velocity 
F friction term 
f friction factor 
G (pf-pg)Hg/p~ 
g gravitational acceleration 
H channel height 
h fluid height 
.j superficial velocity 
K constant 
k wave number 
P pressure 
R channel aspect ratio 
t time 
V velocity 
v relative velocity 
W channel width 
x horizontal coordinate. 

Greek symbols 
gas void fraction (hJH) 

q~ term defined in the text 

NOMENCLATURE 

? 

q 

P 
(7 

T 

ratios defined in the text 
wave height 
fluid density 
terms defined in the text 
time constant (at/a3) 
wave front coordinate (Ct-x) 
term defined in the text. 

Subscripts 
0 undisturbed state 
1 first-order variable or index for 
2 second-order variable or index for 
3 index for a 
+ forward wave 
- backward wave 
* dimensionless parameter 
b wave break condition 
cr critical value 
d dynamic wave 
f liquid phase or friction factor 
g gas phase 
i interface 
w continuity wave. 

cept of structural stability to identify the possible 
stable equilibrium conditions. They concluded that 
only the thinnest steady surface level could be physi- 
cally observed, and thus the linear perturbation 
should only be applied to this steady-state. In 1994 
they extended their studies to the analysis of non- 
linear wave stability via a numerical method [12]. 
Their results appeared to support the linear theory. 

In the present research, a different technique, wave 
front perturbation, is applied to a one-dimensional, 
viscous, concurrent, separated two-phase flow in a 
horizontal rectangular duct. The original partial 
differential equations are subsequently reduced to a 
first-order non-linear ordinary differential equation 
containing only the first-order perturbed variable. The 
linear solution of this ODE agrees with the conclusion 
of a small amplitude wave perturbation method with 
friction effects [1], i.e. instability occurs if the con- 
tinuity wave overtakes the dynamic wave. However, 
in the case of air-water concurrent flow for instance, 
this criterion is valid only for the forward waves. 
According to the new method, backward waves are 
unconditional stable. With weakly non-linear effects, 
the full solution of the ODE suggests that the linear 
stability result is a sufficient condition for stratified 
wavy flow to be unstable, and may over-predict the 
critical gas velocity, especially when there exist large 
external disturbances. Accordingly, a weakly non-linear 
wave instability criterion is obtained. However, infor- 
mation of the initial disturbance is needed to prac- 

tically predict the occurrence of wave instability. Fur- 
thermore, the type of unstable waves, under-cut waves 
or roll waves, can be predicted analytically in terms 
of the non-linear effects. 

WAVE FRONT PERTURBATION 

For a one-dimensional, viscous, concurrent, sep- 
arated two-phase flow in a horizontal rectangular duct 
with the liquid phase at the bottom part (Fig. 1), the 
governing equations for the two phases are derived 
[1] in the following form by assuming no phase 
change, no surface tension effect, incompressible 
fluids, and turbulent isothermal flows. 

Continuity equations 

f ;  + ~ = o (2) 

~(1-~)  ~(1-~)Vf 
~t + a ~  0. (3) 

Momentum equations 

/~v~ aVg\ 

f "v (4) 
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(~ Vf c o Vr\ cOP ( p f  _ ps)gH~ x 

ff 2 ]/ 1 
-- 2PfVf ~H(1--s) -b ~ )  

fi 
+ 2H(1-s) p*(Vg- Vf)lVg- Vf[, (5) 

where s is the area averaged gas void fraction rep- 
resenting hg/H, H and W are the channel height and 
width, P, pg, Pr, Vg, Vc, fc, fg andfi  denote pressure, gas 
density, liquid density, gas velocity, liquid velocity, 
liquid side wall friction factor, gas side wall friction 
factor, and interfacial friction factor, respectively. The 
x coordinate is in the flow direction as shown in Fig. 
1. By combining equations (4) and (5) to eliminate 
pressure gradient terms, we then have 

(~t --]-Vg ~ X )  ~ p f g ~ - " ~ - V f  ~X/ 

~s 
= - -  G ~ x  + F ( s ,  Vg, Vf) (6 )  

f i  2 /  1 F(S'Vg'Vf)=2]~pfgVf~ H(1-s) ~_2) 

f 
2Hs(1-s) (Vg- VO[ Vg- Vfl 

,7, 

G = (pf-- pg)gH/pg 7pfg = Pf/Pg. 

Equations (2), (3) and (6) constitute a system of 
partial differential equations, to which the wave front 
perturbation technique can be applied [13]. Since the 
system admits a steady solution that satisfies F(s0, 
Vgo, Vf0) = 0, these equations can thus be perturbed 
around the steady state by tracing the wave front of a 
disturbance and expanding the variables in power of 

= (Ct- x). Here C stands for the wave front propa- 
gation velocity, and ~ equals zero at the wave front 
where the liquid level is neutral. 

s = So+S,(t)~+½Sz(t)~ 2 + ' ' '  

Vg = Vgo+ Vg,(t)~ +½Vg2(t)~ 2 +""  

Vf = Vf0+ Vn(t)¢+½Vf2(t)~z+ "'" 

By substituting these expansions into equations (2), 
(3) and (6), and equating the successive terms in powers 
of ~ to zero, the following equations from the first- 
order and the second-order terms are obtained: 

[A] V,, = 0 

v, .J 

[-(Vgo-C) 

[A]= L (V~o~ c) 

[A] Vg2 ={B} 
v ~ J  

{B} = f 

So o 1 
0 --(1 --s0) 

(V,o- c) -Tpf,(vf0- c) / 

(8) 

( d s l / d t -  2al Vgl) 
(dsl/dt-2slVn) ) )  

- Fl - •pfg(dVn/dt- V2 )+ (dVgl/dt- V2g, 

(9) 

OF OF 
FI = sl + Fg I -[- Vfl 

The first-order equation [equation (8)] is homo- 
geneous. For  non-trivial solutions, the determinant of 
the coefficient matrix [A] should be zero, resulting in 
a quadratic algebraic equation for the wave pro- 
pagating velocity C, which is then solved as 

c_+ = Vo + G (10) 

(1 --  SO) Wg 0 + 7pfg~o Vfo 
V0 = (11) 

(1 -- s0) -{-'~pfgSo 

c~= 

x/~o (1 - ao) {[(1 - ~o) + "~pfg~o] G --  '~pfg (Vgo --  Vfo) 2 } 

(1 - ~o) + ~pfg~o 

(12) 

where V0 is defined as the mean velocity of the two- 
phase flow, and Cd as the amplitude of the dynamic 
wave velocity relative to the mean motion. From this 
solution, the K-H instability criterion arrives at once 
when Cd becomes imaginary as gas velocity increases 

Vg-  Vf ~ > / G [ ( 1 - s 0 )  +7pfgS0] (13) 
•pfg 

Assuming very large density ratio 7pfg, as in the case 
of air-water f low for instance, we can readily reduce 
this K-H instabil i ty criterion to the form of  equation 
(1). However, the latter results from the second-order 
equation will illustrate that the viscous wave insta- 
bility occurs at a much smaller relative gas velocity, 
especially in the slug or plug transition region. 

Since the two coefficient matrixes in equations (9) 
and (8) are identical, there must exist the following 
restriction for equation (9) to permit possible solu- 
tions 
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{Z)+{B] = 0 ,  (14) 
where {Z} T, the left null-space of matrix [A ], is defined 
a s  

{zl~[A] = 0 (15) 

{ z } T = {  (V,o--C)~,, 7p,-g(Vro-C)l_~+, ,1}. (16) 

After substituting equation (16) into equation (14), 
we obtain the following ODE with the first-order per- 
turbed variables as functions of time: 

E/d~l dVgi dVrl ) 
- , , , ' :~1 ,  V g l ,  V f l , s o ,  Vgi l ,  Vf(i = 0 .  

dt dt 

(17) 

In this equation, l,g) and Vft can be expressed in 
terms of s~ based on the first-order equation 

Vg0 - C Vgl - ~l (18) 
So 

vro - C Vii - ~1- (19) 
1 - ~ 0  

Therefore, by replacing Vg~ and Vr~ in equation (17) 
with the solution equations (18) and (19), a first-order 
ODE containing only ~ as a dependent variable is 
obtained in the form of 

d s  I .~ 
a, ~ -  +¢r2~7+a~sl = 0, (20) 

where the as are the functions of the undisturbed 
variables 

-I- ---> Ct 2.~O)'prg + (1 --gq)) 
a, = q ( + C d )  _ ~ C  ' m= s 0 ( 1 - s 0 )  

(21) 

( / V r o - C \  2 / V g o - C \  2) 
(22) 

{ + ~ C +  F'v, F'v~ 
a3=-~(vwT-Cd)  ~C_. '  (" ( l - ~ o )  ~0 

(23) 

~ f'~ - F'~ ( Vgol'~o! -}- F'vf[Vn,i( I s0)]}_  

t'~,~ = ( F'vd'(l - S o ) - F g , j s o  Vo. 

(24) 

In the expression of a3, v~ is the so-called 'continuity 
wave velocity' relative to the mean flow motion 
defined by Wallis in 1969. All the partial derivatives 
of F with respect to the dependent variables are evalu- 
ated at the equilibrium point. For  fixed Vgo and s0, the 
liquid velocity Vf0 are solved from the equilibrium 
equation (F(Vg0, Vf0, ~o) = 0), and the first-order dis- 
turbances near the wave front are governed by equa- 

tion (20). This equation is a standard Riccati equa- 
tion, which has the following exact analytical solution 
for a given initial disturbance ~ ( t  = 0). 

It indicates that evolution of the disturbance s~ is 
time dependent. Its behavior, either damped or grow- 
ing, depends on the coefficients. Consequently, the 
wave stability boundary can be obtained by solving 
for the conditions for the initial disturbance to grow 
without bound as time increases. 

STABILITY CRITERIA 

In order to compare the results with the small- 
amplitude wave perturbation theory [1], it is worth- 
while to first consider small disturbances. For  a small 
initial disturbance ~ ( t  = 0), the non-linear term in 
equation (20) is negligible, and this equation is thus 
reduced to 

d~l (t) cr~ 1 
~l(t) = - sl (t). (26) 

dt ~t 

For a given initial disturbance, its solution reads 

~l(t) = ~l(t = 0)e ~'~ (27) 

Accordingly, a small disturbance will be amplified 
or damped depending on the sign of the time constant 
r. If v is smaller than zero, i.e. for 

r -  q q~(-T- C~) > 0 ,  ~ C  

(28) 

waves become unstable. Since if, ~0 and Cd are all 
positive from the definitions, instability occurs when 
the magnitude of Vw is greater than Ca. For Vw greater 
than zero, the continuity wave moves faster than the 
mean flow, and only the forward moving wave with 
velocity C+ equal to Vo+ Cd can be unstable. On the 
other hand, if vw is smaller than zero, the continuity 
wave moves slower than the mean flow, and only the 
backward moving wave with velocity C equal to 
V0-Cd can be unstable. This is exactly the same as 
the conclusion drawn by Wallis in his small amplitude 
wave perturbation approach. For  convenience, these 
results are termed the linear stability criteria because 
equation (26) is obtained by neglecting the non-linear 
term ~rza 2 in equation (20). 

However, the mechanism of the wave instability 
here is different from the mechanism of wave height 
growing exponentially with respect to time. Physically, 
- ~  is the spatial derivative of gas void fraction at the 
equilibrium point, which is proportional to the slope 
of the liquid level: 
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1,  f/ 00 

~- 0.5 ef  

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 
t / I x l  t / I x l  

Fig. 2. Transient behavior of eL(t) with r > 0 (b < - 1  Fig. 3. Transient behavior of e~(t) with r < 0 (b > 0 
unstable), unstable). 

c~00x = = so 1 6~hf hf=hf~" ~1 (t) = - = ~ ~-~- (29) 

When linear instability occurs, the wave front slope 
(either positive or negative) becomes steeper and stee- 
per, and eventually breaks. In other words, the linear 
stability criterion here is the wave-front break-up con- 
dition. Since it predicts a critical gas velocity very 
close to the existing experimental data for slug for- 
mation (see next part for detailed comparisons), it is 
postulated that slug formation is related to the wave 
front break-up criterion. Following this logic, the 
weakly non-l inear effects can be evaluated with the 
solution (25). Its non-dimensional  form reads 

el (t) 1 
~f(t = 0) - (b + 1) exp (t/r) - b'  (30) 

where 

~, (t = 0)0-2 
b -  

0-3 

The parameters b and ~ determine the evolution of 
an initial disturbance ~l(t---0).  Figure 2 shows the 
development of an initial disturbance with z greater 
than zero, corresponding to the linearly stable 
condition. With b smaller than minus one, however, 
~1 grows to infinity as time increases. Therefore, a 
wave stable from the linear criteria is predicted to be 
non-linearly unstable if the initial disturbance satisfies 

cq (t = 0)0-2 
b < - 1 .  (31) 

0-3 

With b approaching zero for either very small initial 
disturbance or near zero 0-2, el decays in the same way 
as predicted from the linear solution (the heavy solid 
line in Fig. 2). On the other hand, for linearly unstable 
waves (~ < 0), Fig. 3 shows that waves are unstable 
if b is greater than zero. Namely, any initial wavy 
disturbance with both front and tail slopes will eventu- 
ally break. 

A rigorous way to find the weakly non-linear wave 
stability boundary  is to examine the conditions for the 
denominator  of equation (30) equal to zero. 

[ b + l ] e x p ( t b / r ) + b = O ,  t b E ( 0 , + ~  ), (32) 

where tb denotes the wave breaking time, the time 
needed for an initial wave slope to grow to infinity, 
i.e. 

t u = r l n  ' e t ( t = 0 )  ~oo. (33) 

For any finite positive solution of tb, the disturbance 
is unstable, while • and b are restricted by the fol- 
lowing conditions: 

0-1 0-2~1 ( l  = 0)  
r = - - > 0  and b -  < - 1  (34) 

0-3 0"3 

o r  

0-t 0-2~ (t = O) 
" r = - - < O  and b -  > 0 .  (35) 

0"3 0-3 

Thereby, the linearly stable wave may be unstable 
depending on the initial disturbances. The possible 
unstable waves that satisfy the linear stability con- 
dition are summarized in Table 1. Two types of 
unstable waves, i.e. roll waves and under-cut waves, 
can occur under  certain flow conditions. An unstable 
roll wave has a sharpening wave-front slope 
(cq(t) < 0) and eventually collapses forward, while an 
unstable under-cut wave has a growing wave-tail slope 
(~l(t) > 0) and finally breaks backward (Fig. 4). In 
determining the type of unstable waves, the sign of 
parameter 0-2 plays an important  role. From the defi- 
nition [equation (22)], 0-2 is related to the non-linear 
effect of  the dynamic pressure difference between the 
liquid and gas phases. More detailed interpretations 
will be given later. 

When the linear stability condit ion is satisfied 
(~ > 0), the wave is unstable if the initial magnitude 
of ~1 (t = 0) is greater than the magnitude of 0-3/a2. 
To demonstrate this criterion, a sinusoidal initial 
disturbance r l=J1oCOS(kCt-kx)  is taken as an 
example, where r/ is measured from the equilibrium 
interface level and k is the wave number.  Because 
el is proport ional  to the liquid level slope at the 
neutral point, the instability criterion can be expressed 
in the form of 



2072 Q. w u  and M. ISHII 

Table 1. Instability conditions and modes 

Linear instability Weak nonqinear modification 

=(al/c0~ > 0 a:, > 0, ~l(0) > la3/azl., unstable 
Forward wave is linearly stable a2 ~ < 0, ~(0) < -la~/a21 +, unstable 
r =(a~/a3) > 0 a2 > 0, ~,(0) < -ja~/azl ,unstable 
Backward wave is linearly stable a: < 0, :q(0) > Ja3/a21 , unstable 

Wave break mode 

roll wave 
under-cut wave 
under-cut wave 
roll wave 

wave propagation direc t ion  

roll  wave 

under-cut wave 
Fig. 4. Schematics of under-cut wave and roll wave. 

q0k > H ~ . (36) 

With certain equilibrium gas velocity and void frac- 
tion, the product of  wave height and wave number 
(or the ratio of  wave height to wave length) has a 
threshold value. Waves will break if rt0k is greater 
than this limit. A shorter wave has a lower height limit, 
and a longer wave has a greater height limit. It 
is quite interesting that a similar criterion for a Stokes 
wave on an open surface of  deep water was obtained 
by Michell in 1985 [14]. He found that the maximum 
ratio of  wave height to wavelength was 0.142, how- 
ever, with a completely different approach. 

To practically predict the occurrence of  wave insta- 
bility, the shape and the size of  the initial disturbance 
are needed. Nevertheless, as the gas velocity increases, 
the limit value decreases and finally approaches zero 
when the continuity wave catches up with the dynamic 
wave (a3 = 0). Consequently, waves of  any amplitude 
becomes unstable. Hence, it seems safe to conclude 
that the linear stability criterion provides a sufficient 
condition for the formation of  unstable waves. 

DISCUSSION 

It should be emphasized again that the so-called 
instability here refers to the wave breakage rather than 

the slug formation. The existing experimental data for 
the interfacial wave instability in two-phase duct flow 
are mostly characterized with the onset of  slug for- 
mation without external excitations. In such cir- 
cumstances, the disturbances originated from 
entrance effects or turbulence can be considered very 
small, with both front and tail slopes. These dis- 
turbances will grow and break, sooner or later, due to 
the relatively small a3. As this process continues, the 
blockage of  the flow channel is inevitable, resulting 
in slug formation. This conclusion agrees with the 
previous small amplitude perturbation theory. For  
large disturbances, a smaller gas velocity compared to 
the prediction of  the linear theory can break the waves. 
If the ratio of  the wave height to the wavelength of  
the newly generated disturbances caused by the wave 
breakage exceeds the threshold restriction, wave 
breakage will repeat and eventually induce slug flow. 
Otherwise, the liquid level will return to the stratified 
state. Unfortunately,  there are no systematic exper- 
imental data available for the behavior of  the breaking 
waves, especially for the closed duct two-phase flow. 
Therefore, it is still uncertain whether the non-linear 
wave instability would result in slug transition. 

Without  external disturbances, the linear instability 
criterion matches the existing experimental data very 
well. The procedure to find the stability boundary is 
straightforward. With lumped friction factors at a 
fixed void fraction, the following critical gas velocity 
can be obtained explicitly by equating the continuity 
wave speed Vw to the dynamic wave speed Cd. 

Vg0c r = K ~  f- Pg)H°~°g,pg (37) 

where the K factor is 

K =  

r ( 1 - ~0)[( 1 - :~,,) + ?,p,-~c~0] 

 f0/2 
Vgo/ + [(1 - ~°) + ~'Pf~°l~- 

(38) 

In the K factor, Vfo/1/~ and Vw/Vso are independent 
of  Vg0 [13]. The lumped wall friction factors ~ andfg) 
are assumed to be 0.005 for both the liquid and gas 
phases in turbulent flow region. The interfacial fric- 
tion f a c t o r f  is chosen as either equal to or larger than 
J~. due to the wavy surface analogous to a rough wall. 
For  the air-water  flow case, computational  results 
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Fig. 
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5. The onset of slugging in rectangular channel 
(R = 0.1 ~ 100). 

1 i!iiiiiiiiiiii D a t a  r ange  / 
U:?:~::~ (Wal l i s  & D o b s o n ) / /  
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R--0.29~¢R=3. 5 

0 , 0 1  . . . . . . . .  
0.1 o~ 1 

6. The onset of slugging in rectangular channel 
(R = 0.292 ~ 3.5). 

Fig. 

show that the relative continuity wave velocity Vw is 
always greater than zero (0.01 < a0 < 0.99) due to 
the large density difference between water and air. It 
implies that only the forward wave with velocity 
V0+ Cd can be unstable when Vw is greater than Cd. 
On the other hand, a backward wave with velocity at 
V0- Cd can never be unstable. These phenomena were 
also observed via the numerical simulation by Barnea 
and Taitel [12]. 

In Fig. 5, the linear stability boundaries are plotted 
with dimensionless relative gas velocityj*L against gas 
void fraction a for different aspect ratio R (R = W/H) 
of a rectangular channel, where J*L is defined as 

J*L = (Vg0~r- Vfo)a~ Pg (39) 
(pf-- pg)gH" 

It is concluded that these boundaries depend on the 
aspect ratio regardless of the channel sizes. A narrow 
channel with small R needs a higher gas velocity to 
trigger instability due to the reduction of the fluc- 
tuating friction force that is in-phase with the void 
fraction disturbance. For R greater than 10, the 
differences are negligible. The dashed line in Fig. 5 
represents the following empirical correlation sug- 
gested by Wallis and Dobson [2] (also by Mishima 
and Ishii [7]), which is independent of the channel 
aspect ratio. 

Vgo¢~ = 0.5/(pf-pg)gH~ . (40) 
~/ Pg 

In Fig. 6, a comparison is made between the linear 
instability criterion and the data of Wallis and Dobson 
[2] for concurrent air-water flow in a 30.48 x 8.89 
cm rectangular channel. The roof of the channel is 
adjustable with a fixed water level between 2.54 and 
22.86 cm, which corresponds to the aspect ratios rang- 
ing from 0.292 to 3.5. With f equal to fg, the linear 

theory predicts reasonably well the lower stability 
boundary of the experimental data. Figure 7 shows 
Kordyban and Ranov's data [6] plotted in J*L VS ~t 
coordinates. A very interesting empirical correlation 
for air-waterflow in a 0.7 x 0.1 m rectangular channel 
was proposed by Nakamura et al. [4]. They found the 
modifying factor to be 0.3 instead of 0.5. With 
f/Jg = 1, Fig. 8 presents an acceptable agreement 
between linear instability criterion and their exper- 
imental data. 

Furthermore, according to Table 1, the type of 
unstable waves can be determined by the sign of tr2, 
which represents the non-linear effects. For the case 
of air-water flow with f/fg = 1, Fig. 9 demonstrates 
that tr2 is greater than zero when linear or non-near 
instability occurs for the waves moving forward rela- 
tive to the mean motion. It indicates that the onset of 
slug flow regime transition in a horizontal air-water 

j *  1 
GL ! i i::i D a t a  range  / 

"i~!~i~i~i ( K o r d y b a n  & R a n o v )  ] 

: - -  M i s h i m a  & Ish i i  / /  

0.1 " ' / : : !  

R=6 . . . . . . .  

0.01 
0.1 o~ 1 

Fig. 7. The onset of slugging in rectangular channel (R = 6). 
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Fig. 9. Types of unstable forward waves with velocity 
C'.(R = 1.o). 

channel flow is caused by roll wave instability. When 
a~ is greater than zero, based on the definition of  
equation (22) the second-order dynamic pressure 
fluctuation caused by the first-order velocity dis- 
turbance in the liquid phase is higher than that in the 
gas phase, i.e. 

Pr( Vii ~)~- > p~( I/~5,):. (41) 

At the wave front where the liquid level slope is 
negative with ~ less than zero, the pressure difference 
tends to push the level sharper and sharper when the 
instability condition is satisfied, resulting in unstable 
roll waves, while on the front side of  a wave, where 
the liquid level slope is positive, the second order 
pressure difference has a tendency to suck up the 

trough of  the wave to end the disturbance, resulting 
in a flat tail level. 

C O N C L U S I O N  

(1) With the wave front perturbation method, the 
wave stability boundary is obtained including weak 
non-linear effects. Its linear instability criterion agrees 
with the conclusion of  small-amplitude wave per- 
turbation technique. Instability happens if the con- 
tinuity wave velocity is greater than the dynamic wave 
velocity. For  the air waterflow case, however, only 
the forward wave can be unstable. Since the initial 
disturbances are small due to entrance and turbulent 
effects, linear criterion can be applied to slug or plug 
formation without significant discrepancy. Fairly 
good agreement with existing, wide range exper- 
inaental data is achieved. 

(2) In I(~L* vs ,:~ coordinates, the linear stability 
boundaries depend on the channel aspect ratios 
(R = W/H) regardless of the channel sizes. A narrow 
channel with small R requires larger gas velocity to 
trigger wave instability, due to the smaller fluctuating 
friction force that is in-phase with the wave front 
slope. For  R greater than 10, the differences are neg- 
ligible. 

(3) A non-linear wave instability criterion is 
obtained. Accordingly, linearly stable initial dis- 
turbances that are stable based on linear theory can 
be unstable if their slopes are greater than a threshold 
value determined by the weak non-linear theory. This 
threshold value is found to be a function of  the mean 
flow conditions. In order to apply the non-linear sta- 
bility criterion in practice, information on the initial 
disturbance is needed. Moreover,  linear stability cri- 
terion is a sufficient condition for slug formation. 
Under certain circumstances, such as the existence of  
large external disturbances, the linear criterion may 
over predict the critical gas velocity for slug forma- 
tion. 

(4) The types of  unstable wave, roll wave or under- 
cut wave, can be predicted with the non-linear par- 
ameter a2. For  the air-water  flow case, the onset of  
wave instability occurs at the front of  the waves that 
move forward relative to the mean motion. This kind 
of  wave is called the unstable roll wave. 

(5) Experimental data are needed to examine the 
wave break-up time or mode for known initial dis- 
turbances. A more profound understanding to the 
slug formation mechanism is expected if the initial 
disturbance can be controlled or measured in a well 
designed experimental facility. Furthermore,  through- 
out this study the friction factors are assumed to be 
constant in order to obtain the insight of  the instability 
mechanism. For  an engineering application, it might 
be too rough to use lumped friction factors. 
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